Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel

Pairwise classification has many applications including network prediction, entity resolution, and collaborative filtering. The pairwise kernel has been proposed for those purposes by several research groups independently, and has been used successfully in several fields. In this paper, we propose an efficient alternative which we call a Cartesian kernel. While the existing pairwise kernel (whi...

متن کامل

Metric learning pairwise kernel for graph inference

Much recent work in bioinformatics has focused on the inference of various types of biological networks, representing gene regulation, metabolic processes, protein-protein interactions, etc. A common setting involves inferring network edges in a supervised fashion from a set of high-confidence edges, possibly characterized by multiple, heterogeneous data sets (protein sequence, gene expression,...

متن کامل

Fast Neighborhood Subgraph Pairwise Distance Kernel

We introduce a novel graph kernel called the Neighborhood Subgraph Pairwise Distance Kernel. The kernel decomposes a graph into all pairs of neighborhood subgraphs of small radius at increasing distances. We show that using a fast graph invariant we obtain significant speed-ups in the Gram matrix computation. Finally, we test the novel kernel on a wide range of chemoinformatics tasks, from anti...

متن کامل

Kernel-Based Metric Adaptation with Pairwise Constraints

Many supervised and unsupervised learning algorithms depend on the choice of an appropriate distance metric. While metric learning for supervised learning tasks has a long history, extending it to learning tasks with weaker supervisory information has only been studied very recently. In particular, several methods have been proposed for semi-supervised metric learning based on pairwise (dis)sim...

متن کامل

Efficient Pairwise Learning Using Kernel Ridge Regression: an Exact Two-Step Method

Pairwise learning or dyadic prediction concerns the prediction of properties for pairs of objects. It can be seen as an umbrella covering various machine learning problems such as matrix completion, collaborative filtering, multi-task learning, transfer learning, network prediction and zero-shot learning. In this work we analyze kernel-based methods for pairwise learning, with a particular focu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2010

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.e93.d.2672